Fast Allocation of Gaussian Process Experts
نویسندگان
چکیده
We propose a scalable nonparametric Bayesian regression model based on a mixture of Gaussian process (GP) experts and the inducing points formalism underpinning sparse GP approximations. Each expert is augmented with a set of inducing points, and the allocation of data points to experts is defined probabilistically based on their proximity to the experts. This allocation mechanism enables a fast variational inference procedure for learning of the inducing inputs and hyperparameters of the experts. When using K experts, our method can run K times faster and use K times less memory than popular sparse methods such as the FITC approximation. Furthermore, it is easy to parallelize and handles non-stationarity straightforwardly. Our experiments show that on medium-sized datasets (of around 10 training points) it trains up to 5 times faster than FITC while achieving comparable accuracy. On a large dataset of 10 training points, our method significantly outperforms six competitive baselines while requiring only a few hours of training.
منابع مشابه
Transductive Log Opinion Pool of Gaussian Process Experts
We introduce a framework for analyzing transductive combination of Gaussian process (GP) experts, where independently trained GP experts are combined in a way that depends on test point location, in order to scale GPs to big data. The framework provides some theoretical justification for the generalized product of GP experts (gPoE-GP) which was previously shown to work well in practice [2, 3] b...
متن کاملGeneralized Product of Experts for Automatic and Principled Fusion of Gaussian Process Predictions
In this work, we propose a generalized product of experts (gPoE) framework for combining the predictions of multiple probabilistic models. We identify four desirable properties that are important for scalability, expressiveness and robustness, when learning and inferring with a combination of multiple models. Through analysis and experiments, we show that gPoE of Gaussian processes (GP) have th...
متن کاملInfinite Mixtures of Gaussian Process Experts
We present an extension to the Mixture of Experts (ME) model, where the individual experts are Gaussian Process (GP) regression models. Using an input-dependent adaptation of the Dirichlet Process, we implement a gating network for an infinite number of Experts. Inference in this model may be done efficiently using a Markov Chain relying on Gibbs sampling. The model allows the effective covaria...
متن کاملHierarchical Double Dirichlet Process Mixture of Gaussian Processes
We consider an infinite mixture model of Gaussian processes that share mixture components between nonlocal clusters in data. Meeds and Osindero (2006) use a single Dirichlet process prior to specify a mixture of Gaussian processes using an infinite number of experts. In this paper, we extend this approach to allow for experts to be shared non-locally across the input domain. This is accomplishe...
متن کاملHierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression
We propose a practical and scalable Gaussian process model for large-scale nonlinear probabilistic regression. Our mixture-of-experts model is conceptually simple and hierarchically recombines computations for an overall approximation of a full Gaussian process. Closed-form and distributed computations allow for efficient and massive parallelisation while keeping the memory consumption small. G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014